

Infra-red sub-wavelength imaging

William Vanderlinde
IARPA
College Park, MD
William.e.vanderlinde@ugov.gov

17 November 2009 ISTFA 2009

Legal Disclaimer

Nothing in this presentation should be considered relevant to any currently open IARPA solicitation. Any questions regarding IARPA-BAA-09-09 must be submitted in writing to dni-iarpa-baa-09-09@ugov.gov or faxed to 301-226-9137, Attention: IARPA-BAA-09-09.

Optical sub-wavelength imaging

- Backside optical techniques are critical to fault isolation and logic diagnostics on modern CMOS circuits.
- Backside optical resolution is limited by the wavelength of infra-red light.
- How can we "beat the resolution limit?"

Rayleigh Criterion

R = Resolution = 0.61 λ / N.A. N.A. = numerical aperture = n sin θ

Where:

 λ = wavelength of light n = refractive index of the medium the lens is operating in (n = 1 for air). $\sin \theta \le 0.95$

Rayleigh Criterion

For backside work, silicon is transparent above about 1 μ m (1000 nm)

```
If:

\lambda = 1064 \text{ nm}

n = 1 \text{ (air)}

\sin \theta \sim 0.95
```

Then Resolution R = 0.61 λ / n sin θ = 680 nm

Note: For FI and debug we don't need resolution equal to the technology node.

Solid Immersion Lens

Refractive index of silicon is n=3.6

SIL Improves NA by 3.6

Resolution = 1000 nm * 0.61 / 3.6 * 0.95 = 180 nm

Lens

SIL Si Chip

Without SIL

With SIL

Images with 100x objective

2 μm —

Solid Immersion Lens

3.6x is a HUGE improvement in resolution.

Relatively inexpensive and easy to use.

Can be used for photons in (laser probing) and photons out (photo emission).

SIL Improvements?

- 1. Weierstrass SIL (Super-hemispherical SIL)
 N.A. ~ n²
- However, N.A. = numerical aperture = n sin θ cannot exceed N.A. = n.

- 2. Choose SIL material with N > 3.6?
- Best SIL has same index as the substrate material.
- 3. Other ideas?

Near-Field Scanning Optical Microscopy

Rayleigh Criteria does not apply in the near field, i.e. within $\sim \lambda$ of the object.

Technology:

- Nominal resolution = 50 nm
- Can be used for photons in (laser probing) and photons out (photo emission).
- NSOM / photo-emission proven (Isakov et al., ISTFA 2008)

Challenges:

- Cannot be combined with SIL
- Scanned technique slow to collect large image
- Limited signal collection
- Must be very close sample preparation issue

Note: silicon < 100 nm thick is transparent to shorter λ

Meta-Material hyper-lens

Negative index materials (n<0) "negative refraction" "cloak of invisibility"

Technology:

- Sub-wavelength imaging demonstrated
- Can be used for photons in (laser probing) and photons out (photo emission).

Challenges:

- Demonstrated resolution is limited
- Cannot be combined with SIL
- Must be very close sample preparation issue

Zhang, et al., UC Berkeley

Point Spread Function Fitting

Photo-activated localization microscopy (PALM) or Stochastic optical reconstruction microscopy (STORM) Sparsely populated point sources can be localized by curve fitting routines.

Technology:

- 20 nm resolution demonstrated (biological samples).
- May be combined with SIL

Eric Betzig, et al., Howard Hughes Medical Institute

Challenges:

- Cannot be used for photons in (laser probing)
- Requires a lot of photons
- CMOS photo emitters may not be sparsely populated

Entangled Photon Imaging

"Entangled photons" can be recombined to form one photon with half the wavelength

Technology:

- N = 2 gives 2x better resolution
- N = 4 gives 4x better resolution, etc.
- May be combined with SIL

Challenges:

- Little experimental data
- Cannot be used for photons out (photo emission)
- Entangled photon sources only a few % efficient

Parametric down converter

Lens

Si Chip

Interference Microscopy

Interference Microscope splits and recombined a beam to form an interference pattern.

Can measure Z step height differences on thin films with 1 Å precision

(X and Y precision much poorer, ~λ)

Technology:

- Various sources claim that the technique can be generalized to 3-D

Newton's Rings

Challenges:

- Little experimental data
- Metrology tool, not useful for photo emission or laser probing